
Technical Notes 401 

1~. J. Hear Moss rransfer. Vol. 30, No. 2, pp. 40.405, 1987 0017-9310/87$3.00+0.00 
Printed in Great Britain Pergamon Journals Ltd. 

Thermodynamic optimization of convective heat transfer 
through a duct with constant wall temperature 

P. K. NAG* and P. MUKHERJEE 

Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India 

(Received 29 April 1985 and injnalform 6 May 1986) 

1. INTRODUCTION 

MOST convective heat transfer processes are characterized by 
two types of losses, namely : losses due to fluid friction and 
those due to heat transfer across a finite temperature differ- 
ence. However, these two interrelated phenomena are both 
manifestations of thermodynamic irreversibility and the 
investigation of a process from this single standpoint is 
known as the second law analysis. There exists a direct pro- 
portionality between irreversibility, quantified in the entropy 
generated, and the amount of useful and available work lost 
in the process. Second law analysis seeks to minimize this 
loss by keeping the entropy generated to the minimum. 

Bejan [l-5] has analysed heat transfer from ducts with 
constant heat flux for flat plates, cylinders in cross flow 
and rectangular ducts, and has designed counterflow heat 
exchangers for gas-to-gas applications and supports for cryo- 
genic apparatus. Sarangi and Chowdhury [6] have analysed 
counterflow heat exchangers, accounting for the entropy 
generated due to axial conduction in addition to lateral heat 
transfer and fluid friction, and have found an optimum ther- 
mal conductivity of the wall. Golem and Brzustowski [7] 
examined the irreversibility of heat exchangers using Reistad 
effectiveness which in the limiting case of a reversible heat 
exchanger becomes equal to unity. In connection with the 
maximum available work which could be harvested from 
solar radiation, Parrot [8] found an expression for solar 
energy which was used by him and Kreider [9] for deter- 
mining the efficiency of solar power installations. London 
[lo] has presented an operationally convenient methodology 
for pricing the penalties of thermodynamic irreversibilities. 

However, the important case of heat transfer from a duct 
with constant wall temperature, as happens when there is a 
phase change on one side of a heat exchanger tube, has not 
been investigated and we now attempt to do this. The entropy 
generation rate expressed nondimensionally when plotted 
against the nondimensional initial temperature difference, r, 
shows a distinct minimum, and this optimum value of r is 
then plotted against J, a duty parameter representing heat 
transfer, for various values of n, the length-to-radius ratio of 
the duct. Next it is shown that the conventional wisdom of 
seeking to maximize the ratio of heat transfer to pumping 
power, R, is not consistent with the second law analysis. 
The entropy generation rate is plotted against R for various 
values of J and these curves too show clear minima implying 
that an optimum exists. This optimum value of R yields an 
optimum fluid velocity and is also plotted against J for 
various values of n. 

2. ENTROPY GENERATION 

By energy balance of the control volume of length dx of 
the duct with constant wall temperature T, (Fig. 1) 
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h,2xrdx9 = -rrr2Upcpd6). (1) 

On integration 

0 = B0 exp (-Ax/r) (2) 

and B0 is the initial temperature difference and A is equal to 
twice the Stanton number. 

Considering an entropy balance in the same control 
volume, the rate of entropy generation is 

dQ 
d.& =mds---. 

T* 
(3) 

Assuming the fluid to be an ideal gas or to be incompressible, 
dh = c,dT, and using the thermodynamic relation Tds = 
dh - v dp, and dQ = ti dh, equation (3) can be written as 

__- (4) 

Substituting the values of T- T,, Tand dT/dx from equation 

(2) 

d&, &,A [t exp (-Ax/r)]’ 

dx -- r [l+rexp(-Ax/r)] 

where r is the non-dimensional initial temperature difference. 
On integration along the length of the duct 

s,, =ritc,{r[l-exp(-A~n)]+ln[(l+zexp(-An)/(l+t)]j 

+W-dP/dx).ln l+zexp(-An) 

PT~A (I+r)exp(-An)’ 
(6) 

Defining the entropy generation unit N, as 

N, =2 
P 

and substituting 

dP fplJ= --=__ 
dx r 

dQ 

Ii-#- hl ; h+dh 

s 1 I s+ds 

L-_-_--1 
//////////////// 
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FIG. 1. 
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NOMENCLATURE 

> 
cross-sectional area of duct radius of duct 
2% x ratio of heat transfer rate to pumping power 

.9 

specific heat at constant pressure s specific entropy of fluid 
friction factor &en rate of entropy generation 
specific enthalpy St Stanton number, h,/(pc,U) 

h, average heat transfer coefficient T fluid temperature 
J non-dimensional duty parameter defined in r,, initial fluid temperature 

equation (1 I) T, constant wall temperature 
k thermal conductivity of fluid u mean fluid velocity 
L length of duct u specific volume of fluid 
ti mass flow rate X axial distance along the duct, 
M non-dimensional parameter defined in equation 

(18) Greek symbols 
n L/r ratio of duct t) temperature difference between fluid and wall, 

N, non-dimensional entropy generation number T- T, 
defined in equation (7) 00 initial temperature difference between fluid and 

N non-dimensional parameter defined in equation wall, T,, - T, 

(14) P fluid density 
pressure r non-dimensional initial temperature difference, 
total heat transfer rate from duct QUIT,. 

and 

U= 
P 

O,ac,p[l -exp( -An)]’ 
(9) 

(by re-arrangement) 

Equation (6) can be written as 

N,=t[l-exp(-An)]+ln{[I+~exp(-An)]/(l+r)} 

J’ 

+ r2A[1-exp(-An)]Z 
.In_I+rexp(_-Anl 

~ (IO) 
(l+r)exp(-An) 

where J is the duty parameter defined as 

(11) 

which accounts for the required heat transfer rate, fluid pro- 
perties, wall temperature and duct cross-section. 

Numerical evaluation of equation (10) is done with air as 
the fluid and a Stanton number as 0.005 [I 11. Figure 2 shows 
the variation of N, with t for n = 60, A = 0.01 and J as a 
parameter, while Fig. 3 shows the variation of N, with z for 
J = 2 x lo-*. A = 0.01 and n as a parameter. In Fig. 2 the 
entropy generation number N, has been normalized with 
respect to J to facilitate drawing of the curves, as otherwise 
the three curves would be widely separated on the X-Y plane. 
In Fig. 3 though no such normalization was called for, it has 
been done to facilitate comparison with Fig. 2. These two 
sets of curves show that N, is a strong function of 7 and also 
passes through a minimum value as f is increased from zero. 
This minimum point is the optimum which the second law 
analysis seeks. 
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FIG. 2. 
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FIG. 3. 

3. OPTIMUM VALUES 

3.1. Optimum t 
For t K I, equation (10) can be written as 

N, = z[I -exp(-An)]+ln 
l+rexp(-An) 

If7 

2 

+ 
T2[1 -exJp;-An)]‘~ (12) 

By differentiating N, with respect to r and equating it to zero, 

l- n -30 

2-n-60 

3- n-100 

the optimum value of r is obtained as 

t JJ opt = 7 (13) 

where 

N = P -exp(--2Wl[I -ev-fWlz 

[ 2n 1 ‘+, (14) 

The values of roPt have been plotted against J in Fig. 4 for 
air with A = 0.01 and with n as a parameter. It shows that 
for a particular heat load, there is an optimum initial tem- 

J 

FIG. 4. 
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FIG. 5. 

perature difference between the fluid and the wall which 
corresponds to the minimum irreversibility. 

3.2. Optimum R 
Defining the ratio of heat transfer to pumping power R as 

Q R=- 
aAPU (15) 

and substituting equations (8) and (9) 

R=~JP-exP(-AAn)]’ 
J%l (16) 

Since R is a function of T and N, is also a function of 7, 

loo- 

SO- 

W- 

‘I 
a? 

LO- 

20- 

hence N, is functionally dependent on R. This dependence is 
shown m Fig. 5 for air with A = 0.01, n = 60 and J as a 
parameter. Again, adistinct minimum of N, is visible in each 
of the curves. Since qTpf corresponds to the minimum value 
of A’,, the substitution of?,,,, from equation (13) in (16) yields 
R opt as giwn below 

where 

M= 

R 
M 

opt = ~ 

JJ 
(17) 

I ZII-cxp(-An)]6 Ird 
-._ 

I n[l-exp(-2An)13 

l- n: 100 

2-n= 60 

3-n= 30 
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The variation of R,,, with Jis shown in Fig. 6 with A = 0.01 
and n as a parameter. For a particular value of .7 (i.e. heat 
load), there is an optimum value of R which should be used. 
In other words, using 

in equation (15) 

Q 
[ 1 

I,3 
U”,, = ~ 

T~P:~PLR,~~ 
00) 

Thus there is an optimum fluid velocity which corresponds 
to the minimum loss of available power and should be re- 
commended in the design of the heat exchanger. 

4. CONCLUSIONS 

This analysis shows that in any heat transfer application 
with the constant wall temperature boundary condition, the 
initial temperature difference between the fluid and the wall 
is an important design criterion and should be set at the 
optimum value. There is an optimum ratio of the heat trans- 
fer to pumping power which should be used. Simply max- 
imizing this ratio is not often a good solution, since in that 
case the entropy generated may be far from the minimum 
possible and a large amount of the available energy may thus 
be irretrievably lost. An optimum fluid velocity cor- 
responding to the minimum irreversibility is recommended 
for the design of such a heat exchanger. 
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INTRODUCTION 

MIXED convection accounts for the buoyancy effects on 
forced flows or the forced flow effects on buoyant flows. 
Published results on mixed convection flows do not cover the 
entire mixed convection regime and, in addition, the uniform 
wall temperature case (UWT) has received significantly more 
attention than the uniform wall heat flux case (UHF). A 
relatively comprehensive summary on mixed convection in 
external flows has been given recently by Chen et al. [I]. 

To summarize the analytical studies for mixed convection 
adjacent to flat plates under the UHF heating condition, it 
is noted that the local Nusselt number results have been 
presented for vertical plates covering 0 < Gr,*/Re:” Q 2.8 
for 0.1 < Pr < 100 [2], inclined plates covering 
-0.25 < Gr!cosv/Re?’ s 5 for Pr = 0.7 and 7 131 and 
- 1 < Gr.F/ke:‘* < 2 for Pr = 0.7 and 7 [4], and horiiontal 
plates covering 0 < Gr,*/Re.z < 1 for Pr = 0.7 [5]. Thus, it is 
clear that the heat transfer results that have been presented 
for the UHF case are rather limited in scope with regard to 
the ranges of buoyancy parameter Gr:/Rc and Prandtl 
numbers. 

In the present paper, comprehensive results for the local 
and average Nusselt numbers are presented for the entire 
mixed convection regime, ranging from pure forced con- 
vection to pure free convection (i.e. for 0 < Gr:/Re$’ < CO), 

for a wide range of Prandtl numbers, 0.1 < Pr < 100. The 
flow configurations covered include vertical, inclined and 
horizontal flat plates with uniform surface heat flux. Both 
buoyancy assisting and opposing flows are treated. The 
upper and lower bounds (a, 6) of the significant mixed con- 
vection regime, a Q Gr,/Re,” < b, are established. In 
addition, simple correlation equations for the local and 
average Nusselt numbers are formulated for all the flow 
configurations. Such a comprehensive treatment of mixed 
convection flows on flat plates has not been carried out for 
the UHF case. 

CORRELATIONS 

The formulation and the treatment of laminar mixed con- 
vection flow adjacent to a semi-infinite flat plate with uniform 
heat flux, q,,,, imposed on its surface have been presented 
for vertical, inclined and horizontal geometries [l]. That 
formulation was used to generate new numerical results for 
these flow configurations which cover the entire mixed con- 
vection regime for the buoyancy assisting and the buoyancy 
opposing flow conditions as shown in Figs. 1 and 2. These 
results were used to validate the accuracy of proposed simple 
correlations for the local and average mixed convection Nus- 
selt numbers. 


